Abstract

The collective motion of cell monolayers within a tissue is a fundamental biological process that occurs during tissue formation, wound healing, cancerous invasion, and viral infection. Experiments have shown that at the onset of migration, the motility is self-generated as a polarisation wave starting from the leading edge of the monolayer and progressively propagates into the bulk. However, it is unclear how the propagation of this motility wave is influenced by cellular properties. Here, we investigate this question using a computational model based on the Potts model coupled to the dynamics of intracellular polarisation. The model captures the propagation of the polarisation wave and suggests that the cells cortex can regulate the migration modes: strongly contractile cells may depolarise the monolayer, whereas less contractile cells can form swirling movement. Cortical contractility is further found to limit the cells motility, which (i) decelerates the wave speed and the leading edge progression, and (ii) destabilises the leading edge. Together, our model describes how different mechanical properties of cells can contribute to the regulation of collective cell migration.

Highlights

  • We focused on the migration of cells in the absence of cell proliferation, and where all the cells had the same constant mechanical characteristics

  • Future works may consider the effects of the cell proliferation combined with active cell migration on the collective movement and the propagation of the polarisation wave

  • It is interesting to consider the adaptive responses of cells to the environment, where the cellular properties can vary

Read more

Summary

Introduction

1. Colour bar: the cell polarity their polarity magnitude can only stabilise at zero; see Fig. 1(a) and our discussion in[35]. Starting with an initial polarity, the cells gradually loose their polarity and stop moving.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.