Abstract

Laser Powder Bed Fusion (LPBF) enables the efficient production of near-net-shape oxide dispersion-strengthened (ODS) alloys, which possess superior mechanical properties due to oxide nanoparticles (e.g., yttrium oxide, Y-O, and yttrium-titanium oxide, Y-Ti-O) embedded in the alloy matrix. To better understand the precipitation mechanisms of the oxide nanoparticles and predict their size distribution under LPBF conditions, we developed an innovative physics-based multiscale modeling strategy that incorporates multiple computational approaches. These include a finite volume method model (Flow3D) to analyze the temperature field and cooling rate of the melt pool during the LPBF process, a density functional theory model to calculate the binding energy of Y-O particles and the temperature-dependent diffusivities of Y and O in molten 316L stainless steel (SS), and a cluster dynamics model to evaluate the kinetic evolution and size distribution of Y-O nanoparticles in as-fabricated 316L SS ODS alloys. The model-predicted particle sizes exhibit good agreement with experimental measurements across various LPBF process parameters, i.e., laser power (110-220 W) and scanning speed (150-900 mm/s), demonstrating the reliability and predictive power of the modeling approach. The multiscale approach can be used to guide the future design of experimental process parameters to control oxide nanoparticle characteristics in LPBF-manufactured ODS alloys. Additionally, our approach introduces a novel strategy for understanding and modeling the thermodynamics and kinetics of precipitation in high-temperature systems, particularly molten alloys.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.