Abstract

Progress has recently been made in experimental studies on mechanical properties and strengthening mechanisms of nanoparticle (α-Al) reinforced amorphous aluminum-matrix nanocomposites. However, little quantitative mechanical modeling of amorphous nanocomposites is available to demonstrate the underlying strengthening and deforming mechanisms. The objective of this paper is to explore the overall constitutive relationship of α-Al-reinforced amorphous nanocomposites in terms of a multiscale approach starting from the microstructure at nanoscale. The overall strengthening and deforming behavior of the nanocomposites is investigated from nanomechanics framework and homogenization procedures. Specifically, with the introduction of the nanoparticle surface area-volume ratio, the dependence of overall mechanical properties on nanoparticle sizes is particularly emphasized. Further effects of the nanoparticle concentration and local particle interaction are formulated. The proposed model can provide direct determination of the intrinsic mechanisms of material structure-property relationship at the nanoscale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.