Abstract

We present numerical methods for both the direct solution and simulation of the chemical master equation (CME), and, compared to popular methods in current use, such as the Gillespie stochastic simulation algorithm (SSA) and τ-Leap approximations, this new approach has the advantage of being able to detect when the system has settled down to equilibrium. This improved performance is due to the incorporation of information from the associated CME, a valuable complementary approach to the SSA that has often been felt to be too computationally inefficient. Hybrid methods, that combine these complementary approaches and so are able to detect equilibrium while maintaining the efficiency of the leap methods, are also presented. Amongst CME-solvers the recently suggested finite state projection algorithm is especially well suited to this purpose and has been adapted here for the task, leading to a type of “exact τ-Leap.” It is also observed that a CMEsolver is often more efficient than an SSA or even a τ-Leap approach for computing moments of the solution such as the mean and variance. These techniques are demonstrated on a test suite of five biologically inspired models, namely, stochastic models of the genetic toggle, receptor oligomerization, the Schl¨ogl reactions, Goutsias’ model of regulated gene transcription, and a decaying-dimerizing reaction set. For the gene toggle it is observed that important experimentally measurable traits such as the percentage of cells that undergo so-called switching may also be more efficiently approximated via a CME-based approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.