Abstract

Alcohol is one of the most widely consumed and abused substances, and is a major factor in many alcohol-related diseases, incidents of impaired driving, and crimes. In this letter, we develop a mechanistic model for alcohol metabolism in the human body based on the dynamic parsimonious flux balance analysis technique. The developed whole body alcohol metabolic model contains two main mechanisms for ethanol metabolism in the body, namely, oxidative and non-oxidative mechanisms. The model is able to demonstrate the effect of variations in biochemical kinetics associated with the alcohol dehydrogenase enzyme, gender differences, physiological properties of the human body such as age, weight, and height, and the meal effect on the alcohol clearance from the body. Simulation results show that the model predictions are consistent with in vivo studies. The results from this letter indicate that the proposed metabolic modeling approach may open the door to new opportunities in the area of metabolic nutrition research and personalized medicine since it accounts for physiological properties and biochemical information related to the human body.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.