Abstract

The identification of modules in complex networks is important for the understanding of systems. Here, we propose an ensemble clustering method incorporating node groupings in various sizes and the sequential removal of weak ties between nodes which are rarely grouped together. This method successfully detects modules in various networks, such as hierarchical random networks and the American college football network, with known modular structures. Some of the results are compared with those obtained by modularity optimization and K-means clustering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.