Abstract

The proliferation of power electronics in automotive and industrial applications raises compliance challenges in meeting electromagnetic compatibility (EMC) regulatory standards. In this work, we develop a robust multiscale system-level modeling and simulation methodology for predicting CISPR 25 conducted emission (CE) and radiated emission (RE). The method is based on a novel two-stage process. In the first stage, the IC model is generated either by non-linear time-domain simulation using a device-level physics model or oscilloscope measurements if a prototype is available. In the second stage, the IC model waveforms are used in a simulation environment comprising 3D full-wave frequency domain analysis and specially prepared macro-models for the laboratory equipment. Silicon validation of CISPR 25 EMC measurements on a “low-EMI,” high-performance DCDC automotive/industrial synchronous step-down converter is presented to validate the integrity of the predictive modeling methodology. Good correlations between modeling and EMC-certified testing laboratory emission measurements are achieved (i.e., within +/- 3dBuV for CE and +/- 6dBuV for RE). As a result, the predictive EMC modeling methodology can be implemented, early in the design cycle, to ensure first-pass EMC-compliant design.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.