Abstract

Processing optimization is an important means to inhibit manufacturing defects efficiently. However, processing optimization used by experiments or macroscopic theories in high-speed automated fiber placement (AFP) suffers from some restrictions, because multiscale effect of laying tows and their manufacturing defects could not be considered. In this paper, processing parameters, including compaction force, laying speed, and preheating temperature, are optimized by multiscale collaborative optimization in AFP process. Firstly, rational model between cracks and strain energy is revealed in order that the formative possibility of cracks could be assessed by using strain energy or its density. Following that, an antisequential hierarchical multiscale collaborative optimization method is presented to resolve multiscale effect of structure and mechanical properties for laying tows or cracks in high-speed automated fiber placement process. According to the above method and taking carbon fiber/epoxy tow as an example, multiscale mechanical properties of laying tow under different processing parameters are investigated through simulation, which includes recoverable strain energy (ALLSE) of macroscale, strain energy density (SED) of mesoscale, and interface absorbability and matrix fluidity of microscale. Finally, response surface method (RSM) is used to optimize the processing parameters. Two groups of processing parameters, which have higher desirability, are obtained to achieve the purpose of multiscale collaborative optimization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.