Abstract
This paper presents an algorithm for the multi-robot simultaneous localization and mapping (SLAM) problem with the robot initial locations completely unknown. Each robot builds its own local map using the traditional extended Kalman filter (EKF) SLAM algorithm. We provide a new method to fuse the local maps into a jointly maintained global map by first transforming the local map state estimate into relative location information and then conducting the fusion using the decoupled SLAM (D-SLAM) framework (Wang et al., 2007). An efficient algorithm to find the map overlap and corresponding beacons across the maps is developed from a point feature based medical image registration method and the joint compatibility test. By adding the robot initial pose of each local map into the global map state, the algorithm shows valuable properties. Simulation results are provided to illustrate the effectiveness of the algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.