Abstract
Image deraining is a significant problem that ensures the visual quality of images to prompt computer vision systems. However, due to the insufficiency of captured rain streaks features and global information, current image deraining methods often face the issues of rain streaks remaining and image blurring. In this paper, we propose a Multi-receptive Field Aggregation Network (MRFAN) to restore a cleaner rain-free image. Specifically, we construct a Multi-receptive Field Feature Extraction Block (MFEB) to capture rain features with different receptive fields. In MFEB, we design a Self-supervised Block (SSB) and an Aggregation Block (AGB). SSB can make the network adaptively focus on the critical rain features and rain-covered areas. AGB effectively aggregates and redistributes the multi-scale features to help the network simulate rain streaks better. Experiments show that our method achieves better results on both synthetic datasets and real-world rainy images.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Visual Communication and Image Representation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.