Abstract

Three-dimensional (3D) observations of internal structures are important for evaluating material properties. Serial sectioning with destructive processes is traditionally employed as a 3D observation method. Identifying the boundaries of elements in microscope images and measuring the mechanical properties of each element are required for the evaluation of the mechanical properties of composite materials. This study provides a system for measuring the local hardness and elastic modulus by conducting indentation tests during serial sectioning processes. An automatic serial sectioning observation was performed during a combination process of precision cutting in high-speed milling with a single-crystal diamond tool and microscopic observation. A Vickers indenter was attached to a tool spindle table, and indentation tests were conducted under a displacement control process at submicron spatial resolution. The indentation modulus was obtained by analyzing the force–displacement profile measured during the unload process. The scale effects relating to the indentation depth in the measurements of the indentation modulus were confirmed for an Al alloy sample measured in this system. This study focused on the identification of components by using hardness information measured under the same indentation depth on a two-dimensional flat surface after precision cutting of the material. Three types of metal wires (1 mm diameter) embedded in plastic resin were used in the experiment. The hardness distributions on the serial sectioning surfaces were measured, and the values measured at each wire area on 3D positions were used for the identification of their material properties. This serial sectioning observation creates a 3D microstructural model including not only microscopic images, but also hardness and elastic modulus information for the identification of components in the microscopic area.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.