Abstract
N-glycopeptide is considered as one of significant biomarkers which provide guidance for the diagnosis and drug design of diseases. However, the direct analysis of N-glycopeptides is nearly impracticable mainly owing to their extremely low abundance and grave signal suppression from other interfering substances in the bio-samples. In this research, a multiply-mesoporous hydrophilic TiO2 nanohybrid (mM-TiO2@Cys) was synthesized by immobilizing Cys on a TiO2 substrate with hierarchical mesopores to achieve the highly-performed enrichment of N-glycopeptides. With the advantages of superior hydrophilicity and multiply-mesoporous structure, the obtained material exhibited an excellent selectivity (IgG digests and BSA digests at the molar ratio of 1/500), a high sensitivity (1 fmol μL−1 for IgG digests) and a good size-exclusion ability (IgG digests, IgG and BSA at the molar ratio of 1/500/500) in the enrichment of N-glycopeptides from IgG digests. As a result, 281 N-glycopeptides corresponded with 109 glycoproteins were identified from 2 μL serum digests of the patients with nasopharyngeal carcinoma, and 181 N-glycopeptides corresponded with 78 glycoproteins were identified from 2 μL serum digests of the healthy volunteers, revealing the potential application value of mM-TiO2@Cys in glycoproteomics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.