Abstract

In this paper, we define the multiplicative Hecke operators T(n) for any positive integer on the integral weight meromorphic modular forms for Γ0(N). We then show that they have properties similar to those of additive Hecke operators. Moreover, we prove that multiplicative Hecke eigenforms with integer Fourier coefficients are eta quotients, and vice versa. In addition, we prove that the Borcherds product and logarithmic derivative are Hecke equivariant with the multiplicative Hecke operators and the Hecke operators on the half-integral weight harmonic weak Maass forms and weight 2 meromorphic modular forms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.