Abstract
AbstractWe will give a representation-theoretic proof for the multiplication formula in the Ringel-Hall algebra of a cyclic quiver Δ(n). As a first application, we see immediately the existence of Hall polynomials for cyclic quivers, a fact established by J. Y. Guo and C. M. Ringel, and derive a recursive formula to compute them. We will further use the formula and the construction of a monomial basis for given by Deng, Du, and Xiao together with the double Ringel-Hall algebra realisation of the quantum loop algebra given by Deng, Du, and Fu to develop some algorithms and to compute the canonical basis for . As examples, we will show explicitly the part of the canonical basis associated with modules of Lowey length at most 2 for the quantum group .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.