Abstract
Bagaza virus (BAGV) is a mosquito-borne orthoflavivirus known to occur in regions of southern Europe, Africa, India and the Middle East. The virus has been associated with neurological disease and fatalities in various wild bird species. Association with human disease is not confirmed although limited serological evidence has suggested human infection. Surveillance programs for screening mosquitoes for evidence of arbovirus infection play an important role in providing information regarding the circulation and spread of viruses in specific regions. BAGV was detected in a mosquito pool during surveillance of mosquitoes collected in central South Africa between November 2019 and March 2023. Homogenized mosquito pools were screened for flaviviral RNA using conventional RT-PCR and virus isolation was attempted on positive samples. BAGV was detected and subsequently isolated using cell culture. A multiplex tiling PCR method for targeted enrichment using a PCR based or amplicon sequencing approach of the complete genome of BAGV was developed and optimized. Primers were designed using alignment of complete genome sequence data retrieved from GenBank to identify suitable primer sites that would generate overlapping fragments spanning the complete genome. Six forward primers and eight reverse primers were identified that target the complete genome and amplified nine overlapping fragments, that ranged in length from 1954 to 2039 with an overlap ranging from 71 to 711 base pairs. The design strategy included multiple forward and reverse primer pairs for the 5’ and 3’ ends. Phylogenetic analysis with other isolates was performed and BAGV isolate VBD 74/23/3 was shown to share high similarity with previous BAGV isolates from all regions, with genetic distance ranging from 0.026 to 0.083. VBD 74/23/3 was most closely related to previous isolates from southern Africa, ZRU96/16/2 isolated from a post-mortem sample from a pheasant in 2016 and MP-314-NA-2018 isolated from mosquitoes in northwestern Namibia with genetic distance 0.0085 and 0.016 respectively. Currently there is limited complete genome sequence data available for many of the arboviruses circulating in Africa. The multiplex tiling method provided a simple and cost-effective method for obtaining complete genome sequence. This method can be readily applied to other viruses using sequence data from publicly available databases and would have important application facilitating genomic surveillance of arboviruses in low resource countries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.