Abstract

The possibility of using a neural network to validate process signals during normal and abnormal plant conditions is explored. In boiling water reactor plants, signal validation is used to generate reliable thermal limits calculation and to supply reliable inputs to other computerized systems that support the operator during accident scenarios. The way that autoassociative neural networks can promptly detect faulty process signal measurements and produce a best estimate of the actual process values even in multifailure situations is shown. A method was developed to train the network for multiple sensor-failure detection, based on a random failure simulation algorithm. Noise was artificially added to the input to evaluate the network’s ability to respond in a very low signal-to-noise ratio environment. Training and test data sets were simulated by the realtime transient simulator code APROS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.