Abstract
Based on wavelength-dependent and temperature-varying time-resolved photoluminescence (PL) measurements, the mechanism of carrier transport among different levels of localized states (spatially distributed) in an InGaN/GaN quantum well structure was proposed for interpreting the early-stage fast decay, delayed slow rise, and extended slow decay of PL intensity. The process of carrier transport was enhanced with a certain amount of thermal energy for overcoming potential barriers between spatially distributed potential minimums. With carrier supply in the carrier transport process, the extended PL decay time at wavelengths corresponding to deeply localized states can be as large as 80 ns.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.