Abstract
Transient faults in logic circuits are becoming an important reliability concern for future technology nodes. Radiation-induced faults have received significant attention in recent years, while multiple transients originating from a single radiation hit are predicted to occur more often. Furthermore, some effects, like reconvergent fanout-induced glitches, are more pronounced in the case of multiple faults. Therefore, to guide the design process and the choice of circuit optimization techniques, it is important to model multiple faults and their propagation through logic circuits, while evaluating the changes in error rates resulting from multiple simultaneous faults. In this paper, we show how output error probabilities change with increasing number of simultaneous faults and we also analyze the impact of multiple errors in state flip-flops, during the cycles following the cycle when fault(s) occurred. The results obtained using the proposed framework show that output error probability resulting from multiple-event transient or multiple-bit upsets can vary across different outputs and different circuits by several orders of magnitude. The results also show that the impact of different masking factors also varies across circuits and this information can be valuable for customizing protection techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.