Abstract

Several peroxisomal proteins have two nonoverlapping targeting signals. These signals have been termed "redundant" because targeting can still occur with only one signal. We now report that separate targeting motifs within both Pmp47 and Pex8 provide complementary function. Pmp47 is an ATP translocator that contains six transmembrane domains (TMDs). We had previously shown that the TMD2 region (termed TMD2R, consisting of TMD2 and a short adjacent segment of cytosolic loop) was required for targeting to proliferated peroxisomes in Saccharomyces cerevisiae. We now report that the analogous TMD4R, which cannot target to proliferated peroxisomes, targets at least as well, or much better (depending on strain and growth conditions) in cells containing only basal (i.e., nonproliferated) peroxisomes. These data suggest differences in the targeting pathway among peroxisome populations. Pex8p, a peripheral protein facing the matrix, contains a typical carboxy terminal targeting sequence (PTS1) that has been shown to be nonessential for targeting, indicating the existence of a second targeting domain (not yet defined in S. cerevisiae); thus, its function was unknown. We show that targeting to basal peroxisomes, but not to proliferated peroxisomes, is more efficient with the PTS1 than without it. Our results indicate that multiple targeting signals within peroxisomal proteins extend coverage among heterogeneous populations of peroxisomes and increase efficiency of targeting in some metabolic states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.