Abstract
In comparison to conventional (channel-limited) field-effect transistors (FETs), Schottky barrier-limited FETs possess some unique characteristics which make them attractive candidates for some electronic and sensing applications. Consequently, modulation of the nano Schottky barrier at a metal-semiconductor interface promises higher performance for chemical and biomolecular sensor applications when compared to conventional FETs with ohmic contacts. However, the fabrication and optimization of devices with a combination of ideal ohmic and Schottky contacts as the source and drain, respectively, present many challenges. We address this issue by utilizing Si nanowires (NWs) synthesized by a chemical vapor deposition process which yields a pronounced doping gradient along the length of the NWs. Devices with a series of metal contacts on a single Si NW are fabricated in a single lithography and metallization process. The graded doping profile of the NW is manifested in monotonic increases in the channel and junction resistances and variation of the nature of the contacts from ohmic to Schottky of increasing effective barrier height along the NW. Hence multiple single Schottky junction-limited FETs with extreme asymmetry and high reproducibility are obtained on an individual NW. A definitive correlation between increasing Schottky barrier height and enhanced gate modulation is revealed. Having access to systematically varying Schottky barrier contacts on the same NW device provides an ideal platform for identifying optimal device characteristics for sensing and electronic applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.