Abstract
This paper investigates the potential of exploiting the redundancy implicit in multiple resolution analysis for automatic speech recognition systems. The analysis is performed by a binary tree of elements, each one of which is made by a half-band filter followed by a down sampler which discards odd samples. Filter design and feature computation from samples are discussed and recognition performance with different choices is presented. A paradigm consisting in redundant feature extraction, followed by feature normalization, followed by dimensionality reduction is proposed. Feature normalization is performed by denoising algorithms. Two of them are considered and evaluated, namely, signal-to-noise ratio-dependent spectral subtraction and soft thresholding. Dimensionality reduction is performed with principal component analysis. Experiments using telephone corpora and the Aurora3 corpus are reported. They indicate that the proposed paradigm leads to a recognition performance with clean speech, measured in word error rate, marginally superior to the one obtained with perceptual linear prediction coefficients. Nevertheless, performance of the proposed analysis paradigm is significantly superior when used with noisy data and the same denoising algorithm is applied to all the analysis methods, which are compared.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.