Abstract

Burkholderia pseudomallei is a causative agent of melioidosis, a fatal tropical infectious disease endemic in Southeast Asia and Northern Australia. In order to determine the size and characteristics of the bacterial genome, the B. pseudomallei genome and genes were analyzed by pulsed field gel electrophoresis of the undigested, intact megabase DNA, and by computational analysis of nucleotide sequences of B. pseudomallei genes which have been sequenced by several investigators and already deposited in a public database. The results showed that the B. pseudomallei genome consists of two large replicons, and that both contain ribosomal RNA gene sequences, indicating the presence of two chromosomes. The classical arabinose-negative B. pseudomallei isolate K96243 has chromosomes of approximately 3563±73 and 2974±40 kilobase-pairs in size, giving a total genome size of about 6.5 million base-pairs. The arabinose-positive nonvirulent biotype of B. pseudomallei also has two replicons which are smaller than those of the arabinose-negative biotype. Analysis of the publicly-available nucleotide sequences showed that the average B. pseudomallei gene is approximately 1031 base-pairs in size, with an average G+C content of 65.7%. The genome is gene-rich and about 89% of the coding capacity is used as coding sequences. It can therefore be estimated that the entire B. pseudomallei genome encodes about 5600 genes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.