Abstract

We demonstrated a quantum-confined Stark effect electroabsorption modulator consisting of quantum wells of AlGaAs and GaAs on an epitaxial multilayer dielectric mirror, all grown by molecular beam epitaxy. The resulting reflection modulator avoids problems of substrate absorption, and has relatively high contrast ratio (up to ∼8:1 with peak reflectivity of 25% at 853 nm) because the light passes twice through the quantum wells. Reflection modulators are of interest for bidirectional communication systems, in parallel arrays of optical switching and processing devices and for optical interconnects. For the latter there exists the possibility of this device grown on the same substrate alongside a GaAs integrated circuit or even on Si substrates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.