Abstract

This work presents an analysis of predicting multiple future paths of moving objects in traffic scenes by leveraging Long Short-Term Memory architectures (LSTMs) and Mixture Density Networks (MDNs) in a single-shot manner. Path prediction allows estimating the future positions of objects. This is useful in important applications such as security monitoring systems, Autonomous Driver Assistance Systems and assistive technologies. Normal approaches use observed positions (tracklets) of objects in video frames to predict their future paths as a sequence of position values. This can be treated as a time series. LSTMs have achieved good performance when dealing with time series. However, LSTMs have the limitation of only predicting a single path per tracklet. Path prediction is not a deterministic task and requires predicting with a level of uncertainty. Predicting multiple paths instead of a single one is therefore a more realistic manner of approaching this task. In this work, predicting a set of future paths with associated uncertainty was archived by combining LSTMs and MDNs. The evaluation was made on the KITTI and the CityFlow datasets on three type of objects, four prediction horizons and two different points of view (image coordinates and birds-eye view

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.