Abstract

Hadrons are composite objects made of quarks and gluons, and during a collision one can have several elementary interactions between the constituents. These elementary interactions, using an appropriate theoretical framework, can be related to the total and elastic cross sections. At high c.m. energy it also becomes possible to identify experimentally a high ${p}_{\ensuremath{\perp}}$ subset of the parton interactions and to study their multiplicity distribution. Predictions of the multiple interaction rates are difficult because in principle one needs to have a knowledge of the correlated parton distribution functions that describe the probability to find simultaneously different partons in different elements of phase space. In this work we address this question and suggest a method to describe effectively the fluctuations in the instantaneous configuration of a colliding hadron. This problem is intimately related to the origin of the inelastic diffractive processes. We present a new method to include the diffractive cross section in an eikonal formalism that is equivalent to a multichannel eikonal. We compare with data and present an extrapolation to higher energy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.