Abstract
Joint sparse recovery aims to reconstruct multiple sparse signals having a common support using multiple measurement vectors (MMV). In this paper, we propose a robust joint sparse recovery algorithm, termed MMV multiple orthogonal least squares (MMV-MOLS). Owing to the novel identification rule that fully exploits the correlation between the measurement vectors, MMV-MOLS greatly improves the accuracy of the recovered signals over the conventional joint sparse recovery techniques. From the simulation results, we show that MMV-MOLS outperforms conventional joint sparse recovery algorithms, in both full row rank and rank deficient scenarios. In our analysis, we show that MMV-MOLS recovers any row $K$ -sparse matrix accurately in the full row rank scenario with m = K + 1 measurements, which is, in fact, the minimum number of measurements to recover a row $K$ -sparse matrix. In addition, we analyze the performance guarantee of the MMV-MOLS algorithm in the rank deficient scenario using the restricted isometry property (RIP).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.