Abstract

Three new mesenchymal phenotypes were expressed in cultures of Swiss 3T3 and C3H/10T 1 2 CL8 mouse cells treated with 5-azacytidine or 5-aza-2′-deoxycytidine. These phenotypes were characterized as contractile striated muscle cells, biochemically differentiated adipocytes and chondrocytes capable of the biosynthesis of cartilage-specific proteins. The number of muscle and fat cells which appeared in treated cultures was dependent upon the concentration of 5-azacytidine used, but the chondrocyte phenotype was not expressed frequently enough for quantitation. The differentiated cell types were only observed several days or weeks after treatment with the analog, implying that cell division was obligatory for the expression of the new phenotypes. Oncogenically transformed C3H/10T 1 2 CL8 cells also developed muscle cells after exposure to 5-azacytidine, but at a reduced rate when compared to the parent line. Five subclones of the 10T 1 2 line which were the progeny of single cells all expressed both the muscle and fat phenotypes following 5-azacytidine treatment. The effects of the analog are therefore not due to the selection of preexisting myoblasts or adipocytes in the cell populations. Rather, it is possible that 5-azacytidine, after incorporation into DNA, causes a reversion to a more pluripotential state from which the new phenotypes subsequently differentiate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.