Abstract

Differential scanning calorimetry (DSC) studies demonstrate that the multiple melting behavior observed in both R and S enantiomorphs of poly(epichlorohydrin), their equimolar blend and the stereoblock copolymer form follows two distinctly different patterns, depending on the crystallization conditions. Isothermal crystallization at large undercoolings results in primary crystallites which during the heating scan undergo a process of melting/recrystallization and final melting, evidenced by a triple melting peak endotherm with the shape and position of the highest melting peak strongly dependent on scanning rate. By comparison, isothermal crystallization at small undercoolings yields primary and secondary crystallized material which melts with a double peak endotherm, the shape of which depends strongly on the crystallization time, with no indication of reorganization during the scan. These melting behavior observations support previous suggestions about the role of enantiomorphism in the crystallization of the stereoblock copolymer. Characteristic slow overall rates of crystallization of poly(epichlorohydrin) make this polymer an ideal subject for the study and refinement of multiple melting in polymers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.