Abstract
The ability of Staphylococcus aureus cells to induce platelet aggregation has long been recognized. However, despite several attempts to identify the mechanisms involved in this interaction, the nature of the bacterial receptors required remains poorly understood. Using genetic manipulation, this study for the first time provides clear evidence that several S. aureus surface proteins participate in the inter-action with platelets. Mutants of S. aureus strain Newman lacking one or more surface proteins were tested for their ability to stimulate platelet aggregation. This approach was complemented by the expression of a number of candidate proteins in the non-aggregating Gram-positive bacterium Lacto-coccus lactis. S. aureus-induced aggregation was monophasic and was dependent on the platelet receptor GPIIb/IIIa. The fibrinogen-binding proteins, clumping factors A and B and the serine-aspartate repeat protein SdrE could each induce aggregation when expressed in L. lactis. Although protein A expressed in L. lactis was not capable of inducing aggregation independently, it enhanced the aggregation response when expressed on the surface of S. aureus. Thus, S. aureus has multiple mechanisms for stimulating platelet aggregation. Such functional redundancy suggests that this phenomenon may be important in the pathogenesis of invasive diseases such as infective endocarditis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.