Abstract

We review a multiple kernel learning (MKL) technique called ℓ <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">p</sub> regularised multiple kernel Fisher discriminant analysis (MK-FDA), and investigate the effect of feature space denoising on MKL. Experiments show that with both the original kernels or denoised kernels, ℓ <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">p</sub> MK-FDA outperforms its fixed-norm counterparts. Experiments also show that feature space denoising boosts the performance of both single kernel FDA and ℓ <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">p</sub> MK-FDA, and that there is a positive correlation between the learnt kernel weights and the amount of variance kept by feature space denoising. Based on these observations, we argue that in the case where the base feature spaces are noisy, linear combination of kernels cannot be optimal. An MKL objective function which can take care of feature space denoising automatically, and which can learn a truly optimal (non-linear) combination of the base kernels, is yet to be found.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.