Abstract
A two – step Christoffel function based solution is proposed to distribution regression problem. On the first step, to model distribution of observations inside a bag, build Christoffel function for each bag of observations. Then, on the second step, build outcome variable Christoffel function, but use the bag’s Christoffel function value at given point as the weight for the bag’s outcome. The approach allows the result to be obtained in closed form and then to be evaluated numerically. While most of existing approaches minimize some kind an error between outcome and prediction, the proposed approach is conceptually different, because it uses Christoffel function for knowledge representation, what is conceptually equivalent working with probabilities only. To receive possible outcomes and their probabilities Gauss quadrature for second–step measure can be built, then the nodes give possible outcomes and normalized weights – outcome probabilities. A library providing numerically stable polynomial basis for these calculations is available, what make the proposed approach practical.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.