Abstract

RNA viruses such as poliovirus have high mutation rates, and a diverse viral population is likely required for full virulence. We previously identified limitations on poliovirus spread after peripheral injection of mice expressing the human poliovirus receptor (PVR), and we hypothesized that the host interferon response may contribute to the viral bottlenecks. Here, we examined poliovirus population bottlenecks in PVR mice and in PVR mice that lack the interferon α/β receptor (PVR-IFNAR−/−), an important component of innate immunity. To monitor population dynamics, we developed a pool of ten marked polioviruses discriminated by a novel hybridization-based assay. Following intramuscular or intraperitoneal injection of the ten-virus pool, a major bottleneck was observed during transit to the brain in PVR mice, but was absent in PVR-IFNAR−/− mice, suggesting that the interferon response was a determinant of the peripheral site-to-brain bottleneck. Since poliovirus infects humans by the fecal–oral route, we tested whether bottlenecks exist after oral inoculation of PVR-IFNAR−/− mice. Despite the lack of a bottleneck following peripheral injection of PVR-IFNAR−/− mice, we identified major bottlenecks in orally inoculated animals, suggesting physical barriers may contribute to the oral bottlenecks. Interestingly, two of the three major bottlenecks we identified were partially overcome by pre-treating mice with dextran sulfate sodium, which damages the colonic epithelium. Overall, we found that viral trafficking from the gut to other body sites, including the CNS, is a very dynamic, stochastic process. We propose that multiple host barriers and the resulting limited poliovirus population diversity may help explain the rare occurrence of viral CNS invasion and paralytic poliomyelitis. These natural host barriers are likely to play a role in limiting the spread of many microbes.

Highlights

  • RNA viruses undergo error-prone replication and exist as quasispecies due to the high error rate of RNA-dependent RNA polymerases (RdRp)

  • Genetic recombination contributes to quasispecies diversity, and has been detected in poliovirus isolated from patients with paralytic poliomyelitis [6]

  • We engineered a pool of ten marked polioviruses identifiable by a novel assay, infected susceptible mice by injection or oral inoculation, and determined the percentage of the ten viruses that successfully spread to various body sites, including the brain

Read more

Summary

Introduction

RNA viruses undergo error-prone replication and exist as quasispecies due to the high error rate of RNA-dependent RNA polymerases (RdRp). Reversion of the live-attenuated Sabin oral polio vaccine (OPV) by mutation or recombination occurs rather frequently, but only causes vaccine-associated paralytic poliomyelitis (VAPP) in a very small percentage (0.0001%) of people that receive OPV [11,12,13,14]. The reason for such a low incidence of paralytic poliomyelitis and VAPP remains unclear. In human VAPP patients, viral isolates found in the CNS are a minor subset of those found in feces, suggesting viral transit from the gut to the CNS may be difficult in humans [15]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.