Abstract

In Aspergillus nidulans, proline can serve both as a carbon and a nitrogen source. The transcription of the prnB gene, encoding the proline transporter, is efficiently repressed only by the simultaneous presence of ammonium and glucose. Thus, repression of this gene demands the activation of the CreA repressor and the inactivation of the positive-acting GATA factor AreA. Repression of all other prn structural genes results largely from inducer exclusion. In an areA null mutation background, prnB is repressible by the sole presence of glucose. We have determined by EMSA and missing-base interference experiments that there are 15 AreA-binding sites in the prnD-prnB intergenic region. Only sites 13/14, in the proximity of the prnB TATA box, are clearly involved in transcriptional activation and regulation. Mutation of these sites mimics qualitatively the regulatory effect of an areA null mutation. The deletion of the TATA box has a measurable effect on the maximal level of prnB transcription but does not alter the regulation pattern of this gene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.