Abstract
Multiple-criteria decision analysis (MCDA) is a framework where multiple criteria are being considered in a well-structured manner during the decision-making process. This methodology is becoming increasingly popular for aiding and supporting health-care decision making. Defining the criteria is a critical stage in the process as it forms the foundation of MCDA.
 Our aim was to review information sources on the application of MCDA in practice in the world and to analyze the criteria included in the MCDA models. Research objects were MCDA reports and models from PubMed database. Research methods were system and content analyzes, data synthesis, generalization, extrapolation, statistical.
 We reviewed scientific publications and official documents of existing or proposed MCDA models. We identified the criteria and assigned them into nine groups: Economics, Disease description, Intervention description, Health gain, Feasibility, Prevalence, Evidence quality, Social and ethical factors and Other criteria. We looked at MCDAs which are aimed to be used for Reimbursement or Investment Decisions (86%) and for Authorization Decisions (14%). Of the reviewed 25 MCDA models aimed to support reimbursement decisions only 1 lacks cost-related criteria, while 7 scoring systems lack social and ethical factors and 12 MCDAs don’t mention epidemiology or classification of target groups directly. We found that none of the reviewed MCDAs used for authorization decisions mentioned socioeconomic criteria. There is no direct connection between the number of criteria included in MCDA models intended to support reimbursement decisions and the GDP per capita figures of countries.
 It can be seen that the selection of criteria has no standardized approach yet and most of the existing or proposed MCDA models were conducted to be relevant for decision-makers in the particular decision problems. The MCDAs supporting reimbursement decisions considered more criteria and the majority of them included economics and societal factors while most MCDAs intended to support authorization decisions only focused on the potential health benefits and outcomes. The most MCDA models included in our research were built in high-income countries.
Highlights
Провідними науковцями та експертами в світі з фармакоекономічних досліджень – Золтаном Кало (Zoltan Kalo), Паносом Канавосом (Panos Kanavos), Кевіном Маршем (Kevin Marsh), Правеном Токалою (Praveen Thokala) запропоновано сучасні підходи до оцінки технологій охорони здоров’я [1,2,3]
Мы рассмотрели МКАР-модели, которые предназначены для принятия решений о возмещении стоимости или инвестиционных решениях (86%) и для решений о регистрации на рынке (14%)
We reviewed scientific publications and official documents of existing or proposed Multiple-criteria decision analysis (MCDA) models
Summary
Провідними науковцями та експертами в світі з фармакоекономічних досліджень – Золтаном Кало (Zoltan Kalo), Паносом Канавосом (Panos Kanavos), Кевіном Маршем (Kevin Marsh), Правеном Токалою (Praveen Thokala) запропоновано сучасні підходи до оцінки технологій охорони здоров’я (англ. health technology assessment, HTA, далі ОТОЗ) [1,2,3]. Multiple criteria decision analysis, MCDA, далі МКАР), про що свідчать керівні рекомендації Міжнародного товариства фармакоекономічних досліджень ISPOR та Лондонської школи економіки і політичних наук LSE [1,2,3,4]. 1 подано результати аналізу динаміки використання моделей МКАР для ефективного вирішення задач із реімбурсації (n = 25) технологій охорони здоров’я (ТОЗ).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.