Abstract

This paper investigates the problem of correcting multiple criss-cross insertions and deletions in arrays. More precisely, we study the unique recovery of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$n \times n$ </tex-math></inline-formula> arrays affected by <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${t}$ </tex-math></inline-formula> <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-criss-cross deletions</i> defined as any combination of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${t_{\mathrm {r}}}$ </tex-math></inline-formula> row and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${t_{\mathrm {c}}}$ </tex-math></inline-formula> column deletions such that <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${t_{\mathrm {r}}}+ {t_{\mathrm {c}}}= {t}$ </tex-math></inline-formula> for a given <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$t$ </tex-math></inline-formula> . We show an equivalence between correcting <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${t}$ </tex-math></inline-formula> -criss-cross deletions and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${t}$ </tex-math></inline-formula> -criss-cross insertions and show that a code correcting <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${t}$ </tex-math></inline-formula> -criss-cross insertions/deletions has redundancy at least <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${t} n + {t}\log n - \log ({t}!)$ </tex-math></inline-formula> . Then, we present an existential construction of a <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${t}$ </tex-math></inline-formula> -criss-cross insertion/deletion correcting code with redundancy bounded from above by <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${t} n + \mathcal {O}({t}^{2} \log ^{2} n)$ </tex-math></inline-formula> . The main ingredients of the presented code construction are systematic binary <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${t}$ </tex-math></inline-formula> -deletion correcting codes and Gabidulin codes. The first ingredient helps locating the indices of the inserted/deleted rows and columns, thus transforming the insertion/deletion-correction problem into a row/column erasure-correction problem which is then solved using the second ingredient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.