Abstract

PurposeThe fuselage riveted lap-joints are susceptible to multiple site damage (MSD) and should be considered in damage tolerance analysis. This paper aims to investigate the stress intensity factor (SIF) and crack growth simulation for lap-joints based on three-dimensional (3D) finite element analysis.Design/methodology/approachThe 3D finite element model of lap-joints is established by detailed representation of rivets and considering the rivet clamping force and friction. Numerical study is conducted to investigate the SIF distribution along the thickness direction and the effect of clamping force. A predictive method for the cracks propagation of MSD is then developed, in which an integral mean is adopted to quantify the SIF at crack tips, and the crack closure effect is considered. For comparison, a fatigue test of a lap-joint with MSD cracks is conducted to determine the cracks growth live and measure the cracks growth.FindingsThe numerical study shows that the through-thickness crack at riveted hole in lap-joints can be treated as mode I crack. The distribution of SIF along the thickness direction is inconstant and nonmonotonic. Besides, the increase in clamping force will lead to more frictional load transfer at the faying surfaces. The multiple crack growth simulation results agreed well with the experimental data.Originality/valueThe novelty of this work is that the SIF distribution along the thickness direction and the MSD cracks growth simulation for lap-joints are investigated by 3D finite element analysis, which can reflect the secondary bending, rivet clamping, contact and friction in lap-joints.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.