Abstract

AbstractClosely related species often differ in coloration. Understanding the mechanistic bases of such differences can reveal whether evolutionary changes in colour are driven by single key mechanisms or changes in multiple pathways. Non-iridescent structural plumage colours in birds are a good model in which to test these questions. These colours result from light absorption by pigments, light scattering by the medullary spongy layer (a nanostructure found within barbs) and contributions from other structural elements. Fairy-wrens (Malurus spp.) are a small clade of closely related birds that display a large diversity of ornamental structural colours. Using spectrometry, electron microscopy and Fourier analysis, we show that 30 structural colours, varying from ultraviolet to blue and purple, share a similar barb morphology. Despite this similarity, we find that at the microscopic scale, variation across multiple structural elements, including the size and density of the keratin cortex, spongy layer and melanin, explains colour diversity. These independent axes of morphological variation together account for sizeable amounts of structural colour variability (R2 = 0.21–0.65). The coexistence of many independent, evolutionarily labile mechanisms that generate colour variation suggests that the diversity of structural colours in this clade could be mediated by many independent genetic and environmental factors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.