Abstract

Summary Time series segmentation, which is also known as multiple-change-point detection, is a well-established problem. However, few solutions have been designed specifically for high dimensional situations. Our interest is in segmenting the second-order structure of a high dimensional time series. In a generic step of a binary segmentation algorithm for multivariate time series, one natural solution is to combine cumulative sum statistics obtained from local periodograms and cross-periodograms of the components of the input time series. However, the standard ‘maximum’ and ‘average’ methods for doing so often fail in high dimensions when, for example, the change points are sparse across the panel or the cumulative sum statistics are spuriously large. We propose the sparsified binary segmentation algorithm which aggregates the cumulative sum statistics by adding only those that pass a certain threshold. This ‘sparsifying’ step reduces the influence of irrelevant noisy contributions, which is particularly beneficial in high dimensions. To show the consistency of sparsified binary segmentation, we introduce the multivariate locally stationary wavelet model for time series, which is a separate contribution of this work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.