Abstract

For multi-class classification problem, a novel algorithm, called as multiple birth support vector machine (MBSVM), is proposed, which can be considered as an extension of twin support vector machine. Our MBSVM has been compared with the several typical support vector machines. From theoretical point of view, it has been shown that its computational complexity is remarkably low, especially when the class number K is large. Based on our MBSVM, the dual problems of MBSVM are equivalent to symmetric mixed linear complementarity problems to which successive overrelaxation (SOR) can be directly applied. We establish our SOR algorithm for MBSVM. The SOR algorithm handles one data point at a time, so it can process large dataset that need no reside in memory. From practical point of view, its accuracy has been validated by the preliminary numerical experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.