Abstract

A novel ambient hydrolysis deposition (AHD) methodology that employs sequential water adsorption followed by a hydrolysis reaction to infiltrate SnO2 nanoparticles into the nanopores of mesoporous carbon in a conformal and controllable manner is introduced. The empty space in the SnO2/C composites can be adjusted by varying the number of AHD cycles. An SnO2/C composite with an intermediate SnO2 loading exhibited an initial specific delithiation capacity of 1054 mAh g(-1) as an anode for Li-ion batteries. The capacity contribution from SnO2 in the composite electrode approaches the theoretical capacity of SnO2 (1494 mAh g(-1)) if both Sn alloying and SnO2 conversion reactions are considered to be reversible. The composite shows a specific capacity of 573 mAh g(-1) after 300 cycles, that is, one of the most stable cycling performances for SnO2/mesoporous carbon composites. The results demonstrated the importance of well-tuned empty space in nanostructured composites to accommodate expansion of the electrode active mass during alloying/dealloying and conversion reactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.