Abstract
A multiphysics mathematical model to simulate drug delivery in idealized and patient-specific coronary arteries is presented. Blood is modeled as an incompressible Navier–Stokes fluid, the arterial wall as a linear poroelastic medium, and the drug transport is described by a scalar advection-diffusion equation. The drug compound is released into the bloodstream, carried by the flow, deposited onto the endothelium, penetrates into the wall, and is transported within the arterial wall. NURBS-based isogeometric analysis is employed to describe the geometry and discretize the fluid-solid interaction equations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.