Abstract

Multiphoton ionization (MPI)–fragmentation patterns are reported for a series of normal and caged tertiary amines. Ionization is enhanced by two-photon resonance with the 3s and 3p Rydberg states of trimethylamine, triethylamine, and the caged amines quinuclidine and triethylenediamine. Over the wavelength region λ = 400–530 nm, N(CH3)3 ionizes to the parent ion (P) and fragments only by the loss of a H atom to yield the P–H daughter ion; N(C2H5)3 ionizes to its parent ion and fragments by the loss of a methyl to form the P–CH3 ion. The branching ratio of daughter to parent ions is found to be essentially independent of laser intensity but strongly dependent on laser wavelength. The caged amines quinuclidine [N(C2H4)3CH, or ABCO] and triethylenediamine [N(C2H4)3N, or DABCO] fragment extensively over this λ range in a manner dependent on both laser wavelength and intensity. The extent of daughter ion formation in N(CH3)3 and N(C2H5)3 can be understood by consideration of the wavelength regions in which the total available energy from the initial three- or four-photon ionization event exceeds the appearance potential of the given daughter ion. For the caged amines direct observation of this mechanism is masked by fragmentation due to sequential absorption of photons (during the ∼5 ns pulse duration) by the parent and/or daughter ions. The present results show that even for molecules with broad, unstructured UV absorption and MPI spectra such as N(CH3)3 and N(C2H5)3, considerable information on photon–molecule and photon–ion interactions can still be gained by the MPI mass spectrometry technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.