Abstract

Summary Multiphase-flow models for the oil and gas industry are required to investigate and understand the cocurrent or countercurrent flow of different fluid phases under a wide range of pressure and temperature conditions and in several different flow configurations in well-bores, pipelines, and risers and through the surface facilities. Experimental measurements are required to develop and validate the multiphase-flow models under controlled conditions and assess their range of applicability. This is why a large number of multiphase-flow loops exist around the world. However, there are numerous varieties of multiphase-flow occurrences because of differences in pressure and temperature; fluid types; flow regimes; pipe geometry, inclination, and diameter; and whether the flow is steady-state or transient. Building a flow loop that reproduces real hydrocarbon wells, including the reservoir inertia and the complex heat transfer process taking place between the wellbore and the reservoir, is not feasible. Thus, downscaling typical field parameters is necessary to study multiphase flows at laboratory conditions. This paper presents a critical review of multiphase-flow loops around the world, highlighting the pros and cons of each facility with regard to reproducing and monitoring different multiphase-flow situations. The authors suggest a way forward for new developments in this area.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.