Abstract

This paper describes an algorithm that exploits multipath propagation for position estimation of mobile receivers. We apply a novel algorithm based on recursive Bayesian filtering, named Channel-SLAM. This approach treats multipath components as signals emitted from virtual transmitters, which are time synchronized to the physical transmitter and static in their positions. Contrary to other approaches, Channel-SLAM considers also paths occurring due to multiple numbers of reflections or scattering as well as the combination. Hence, each received multipath component increases the number of transmitters resulting in a more accurate position estimate or enabling positioning when the number of physical transmitters is insufficient. Channel-SLAM estimates the receiver position and the positions of the virtual transmitters simultaneously; hence, the approach does not require any prior information, such as a room-layout or a database for fingerprinting. The only prior knowledge needed is the physical transmitter position as well as the initial receiver position and moving direction. Based on simulations, the position precision of Channel-SLAM is evaluated by a comparison to simplified algorithms and to the posterior Cramer-Rao lower bound. Furthermore, this paper shows the performance of Channel-SLAM based on measurements in an indoor scenario with only a single physical transmitter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.