Abstract
The multiparametric luminescence thermometry with Dy3+, Cr3+ double activated yttrium aluminium garnet – YAG is demonstrated. Phospors were synthesized via Pechini method and their structure is confirmed by X-ray diffraction analysis. Mean crystallite size of powders was calculated to be ~22 nm. Morphology was investigated using scanning electron microscopy showing combination of dense, different size chunks constituted of spherical particles bellow 50 nm in size. Photoluminescence emission spectra of the Dy3+, Cr3+ double activated YAG consist of blue and yellow Dy3+ emissions and the broad, deep red Cr3+ emission. The decrease in the Dy3+ emission intensity with the increase in the Cr3+ content indicates the efficient energy transfer from Dy3+ to Cr3+ of ~90%. Temperature-dependant photoluminescence emission measurements are performed under 484 nm and 582 nm excitation in the steady-state domain and in the 175 K–650 K temperature range. The noted alterations of luminescence with temperature present an excellent base for studying the multiparametric temperature readouts. The luminescence intensity ratio, the most frequently exploited luminescent thermometry temperature readout method, was tested using: i) the combination of Dy3+ and Cr3+ emissions, ii) using the double excitation approach, and iii) using Cr3+ emission only, with relative sensitivities of 0.64 %K−1 at 175 K, 0.96 %K−1 at 200 K and 2.2 %K−1 at 200 K, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.