Abstract

In Magnetic Resonance Imaging (MRI), radio frequency (RF) coils of different forms and shapes are used to maximize signal-to-noise ratio (SNR). RF coils are designed for clinical applications and have dimensions comparable with the target body part to be imaged, and they perform best when loaded by human tissue majority of which have conductivity values higher than 0.5 S/m. However, they are not properly tuned and matched for samples having low conductivity such as solid samples with low water content. Moreover, for samples with low filling factor and low conductivity, the noise in MRI is dominated by RF coil losses. In this case, RF coil design can be optimized to improve image SNR.Here, a new software tool (Multi-parameter Analytical Method for B1 and SNR Analysis) MAMBA is presented to design and compare volume coils of birdcage, solenoid, and loop-gap design for these samples. The input parameters of the tool are the sample properties, the coil design and the hardware properties, of which a relative SNR is determined. For that, a figure of merit is calculated from the coil sensitivity, applied resonant frequency and the resistive losses of sample, coil and capacitive components. The tool was tested in an ancient Egyptian mummy head which represents an extreme case of MRI with short T2*. Two optimized birdcage coils were designed using MAMBA, constructed and compared to a commercial transmit receive head coil. Calculated relative SNR values are in good agreement with the measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.