Abstract

In this paper a genetic algorithm (GA) is employed to determine the desired current waveforms for switched reluctance motors (SRM) through generating appropriate reference phase torques for a given desired torque using the torque sharing function (TSF). The objective is to yield smoother phase current waveforms in general, and achieve minimum phase current variations in particular. This problem is formulated into a multiobjective optimization task with certain constraints. Due to the highly nonlinear relationship between the SRM torque and current, this optimization task is an NP-hard problem. To deal with the difficulty, the problem is further coded so that a GA can be applied to facilitate the search of global minimum. Simulation results verify the effectiveness of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.