Abstract

Methods for detecting the community structure in complex networks have mainly focused on network topology, neglecting the rich content information often associated with nodes. In the last few years, the compositional dimension contained in many real-world networks has been recognized fundamental to find network divisions which better reflect group organization. In this paper, we propose a multiobjective genetic framework which integrates the topological and compositional dimensions to uncover community structure in attributed networks. The approach allows to experiment different structural measures to search for densely connected communities, and similarity measures between attributes to obtain high intracommunity feature homogeneity. An efficient and efficacious post-processing local merge procedure enables the generation of high quality solutions, as confirmed by the experimental results on both synthetic and real-world networks, and the comparison with several state-of-the-art methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.