Abstract

In this paper, we propose a grayscale image segmentation method based on a multiobjective optimization approach that optimizes two complementary criteria (region and edge based). The region-based fitness used is the improved spatial fuzzy c-means clustering measure that is shown performing better than the standard fuzzy c-means (FCM) measure. The edge-based fitness used is based on the contour statistics and the number of connected components in the image segmentation result. The optimization algorithm used is the multiobjective particle swarm optimization (MOPSO), which is well suited to handle continuous variables problems, the case of FCM clustering. In our case, each particle of the swarm codes the centers of clusters. The result of the multiobjective optimization technique is a set of Pareto-optimal solutions, where each solution represents a segmentation result. Instead of selecting one solution from the Pareto front, we propose a method that combines all solutions to get a better segmentation. The combination method takes place in two steps. The first step is the detection of high-confidence points by exploiting the similarity between the results and the membership degrees. The second step is the classification of the remaining points by using the high-confidence extracted points. The proposed method was evaluated on three types of images: synthetic images, simulated MRI brain images and real-world MRI brain images. This method was compared to the most widely used FCM-based algorithms of the literature. The results demonstrate the effectiveness of the proposed technique.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.