Abstract

Unlike the conventional mixed H2/H∞ control design method, this study provides a multiobjective fuzzy control design method for nonlinear stochastic Poisson jump-diffusion systems to simultaneously achieve optimal cost and robustness performance in the Pareto optimal sense via the proposed evolutionary algorithm. For a nonlinear stochastic Poisson jump-diffusion system, the Poisson jumps cause its system behaviors to change intensely and discontinuously. To design an efficient controller for a nonlinear stochastic jump-diffusion system is much more difficult. On the other hand, the H2 and H∞ performance indices generally conflict with each other and can be regarded as a multiobjective optimization problem (MOP). It is not easy to directly solve this MOP, owing to (i) the Pareto front of the MOP is difficult to obtain through direct calculation; (ii) the MOP is a Hamilton-Jacobi-Inequalities (HJIs)-constrained MOP. To address these issues, we use Takagi-Sugeno (T-S) interpolation scheme to transform the HJIs-constrained MOP into a linear matrix inequality (LMI)-constrained MOP. Then, we employ the proposed LMI-constrained multiobjective optimization evolutionary algorithm (LMI-constrained MOEA) to efficiently search for the Pareto optimal solution, from which the designer can select one kind of design according to their preference. Finally, a design example is given to illustrate the design procedure and to verify our results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.